iSDX: An Industrial-Scale Software-Defined IXP

Nick Feamster

Princeton University

http://sdx.cs.princeton.edu/

Arpit Gupta, Robert MacDavid, Rüdiger Birkner, Marco Canini, Jennifer Rexford, Laurent Vanbever

Internet Exchange Points (IXPs)

Software Defined IXPs (SDXs)

SDX Creates New Possibilities

- More flexible business relationships
 - Make peering decisions based on time of day, volume of traffic & nature of application

- More direct & flexible traffic control
 - Define fine-grained traffic engineering policies

- Better security
 - Prefer "more secure" routes
 - Automatically black hole attack traffic

Three Years of Research: We Can Now Support Industry Scale

BGP routes and updates for large EU IXP in a commodity hardware switch.

iSDX Evaluation: Summary

- Data Plane State:
 - Requires 65K < 100K forwarding table entries
- Data Plane Update Rate:
 - Requires 0 < 2500 updates/second
- Other Goals:
 - Processes BGP update bursts in real time (50 ms)
 - Requires only 360 BGP Next Hops compared to 25K from previous solutions

Constraints (and Insight)

			Data Plane Performance		
Devices	Operations	State (# entries)	Update Rate (flow-mods/s)		
	Match-Action on Multiple Headers	100K	2,500		
	Matches on IP Prefixes only	~1M	N/A		

Insight: Optimize the use of available resources on each device.

Simple Example

Forwarding Table Entries at SDX

Number of forwarding table entries for A & B's Outbound SDN Policies

SDN Policies	# Forwarding Table Entries	
dPort = $443 \rightarrow \text{fwd(C)}$	1	ASA
$dPort = 22 \rightarrow fwd(C)$	1	J AS A
dPort = 80 → fwd(E)	1	-ASB

Number of Forwarding Entries

	Simple Example	Large IXP
Baseline	3	62K

Data from Large IXP:

- BGP RIBs & Updates from 511 participants
- 96 million peering routes for 300K IP prefixes
- 25K BGP updates for 2-hour duration

Scales, but is not congruent with BGP!

Congruence with BGP Policies

Problem: Need to ensure **p** is not forwarded to C.

Solution: SDN Policy Augmentation

Match on prefixes advertised by C.

Data Plane State Explosion!

SDN Policies	# Forwarding Table Entries			
	10/8 40/8 80/8			
dPort = $443 \rightarrow \text{fwd}(C)$	1	1	0	
dPort = $22 \rightarrow \text{fwd}(C)$	1	1	0	
$dPort = 443 \rightarrow fwd(D)$	1	1	1	} :

SDN policy augmentation increases forwarding table entries.

Number of Forwarding Entries

	Simple Example	Large IXP
Baseline	3	62K
Policy Augmentation	7	68M

Cannot support forwarding table entries and update rate.

Three Insights (and Optimizations)

- Many prefix, policy combinations have exactly the same forwarding decision
 - Optimization: Forwarding equivalence
- Per-participant forwarding decisions have even more commonality
 - Optimization: Independent forwarding equivalence
- Advertisements can be encoded as FEC entries
 - Optimization: Reachability encoding

Forwarding Equivalence Classes

SDN Policies	# Forwarding Table Entries		
	10/8	40/8	80/8
dPort = 443 → fwd(C)	1	1	0
dPort = $22 \rightarrow \text{fwd}(C)$	1	1	0
dPort = 443 → fwd(D)	1	1	1

10/8, 40/8 exhibit similar forwarding behavior.

Applying Forwarding Equivalence

Applying Forwarding Equivalence

Number of Forwarding Entries

	Simple Example	Large IXP
Baseline	3	62K
Policy Augmentation	7	68M
*FEC Computation	4	21M

[*SIGCOMM'14]

Still not possible to support forwarding table entries and update rate.

Three Insights (and Optimizations)

- Many prefix, policy combinations have exactly the same forwarding decision
 - Optimization: Forwarding equivalence
- Per-participant forwarding decisions have even more commonality
 - Optimization: Independent forwarding equivalence
- Advertisements can be encoded as FEC entries
 - Optimization: Reachability encoding

What If Each Participant Computes FEC Independently?

SDN Policies	# Forwarding Table Entries		
	{10/8, 40/8}	80/8	
dPort = $443 \rightarrow \text{fwd(C)}$	1	0	
$dPort = 22 \rightarrow fwd(C)$	1	0	
dPort = 443 → fwd(D)	1	1	

Independent FEC computation is more efficient.

Independent FEC Computation

- Large number of SDX participants
 - Many different policies on groups of prefixes
 - Leads to a large number of small FECs of prefixes
- Compute FECs independently
 - Separate computation per participant
 - Leads to small number of large FECs, and less frequent recomputation
 - Enables "scale out" of the FEC computation

Independent FEC Computation

Idea: Each participant independently computes FECs.

SDN Policies	# Forwarding Entries		
	{10/8, 40/8}	80/8	
dPort = $443 \rightarrow \text{fwd(C)}$	1	0	1,
dPort = $22 \rightarrow \text{fwd}(C)$	1	0	

 $dPort = 443 \rightarrow fwd(D)$

Number of Entries

	Simple Example	Large IXP
Baseline	3	62K
Policy Augmentation	7	68M
FEC Computation	4	21M
Independent FEC Computation	3	763K

Still not possible to support forwarding table entries and update rate.

Three Insights (and Optimizations)

- Many prefix, policy combinations have exactly the same forwarding decision
 - Optimization: Forwarding equivalence
- Per-participant forwarding decisions have even more commonality
 - Optimization: Independent forwarding equivalence
- Advertisements can be encoded as FEC entries
 - Optimization: Reachability encoding

BGP & SDN Coupling

Incoming BGP Update: {AS D withdraws route for prefix 10/8}

SDN Policies	# Forwarding Table Entries		
	10/8	40/8	80/8
dPort = $443 \rightarrow \text{fwd}(C)$	1	1	0
dPort = $22 \rightarrow \text{fwd}(C)$	1	1	0

dPort = 443 → fwd(D)	1 → 0	1	1
----------------------	-------	---	---

Decoupling BGP from SDN

- Apply advances in commodity hardware switches
 - Support for Bitmask Matching (OpenFlow 1.3)

- Extend BGP "next hop" encoding
 - So far: encode FECs (single field)
 - Idea: encode reachability encoding
- Changing only the BGP announcements
 - No need to update the SDX data plane!

Reachability Encoding

Reachability Encoding

Reachability Encoding

SDN Policies	# Forwarding Table Entries	
	С	
dPort = $443 \rightarrow \text{fwd(C)}$	1	12
$dPort = 22 \rightarrow fwd(C)$	1	
dPort = $443 \rightarrow \text{fwd(D)}$	1	} 1

Reduces Data Plane State

Number of Forwarding Entries

	Simple Example	Large IXP
Baseline	3	62K
Policy Augmentation	7	68M
FEC Computation	4	21M
Independent FEC Computation	3	763K
Reachability Encoding	3	65K

We can now run SDX over commodity hardware switches.

We Can Do This at Industry-Scale!

BGP routes and updates for large EU IXP in a commodity hardware switch.

iSDX Evaluation: Summary

- Data Plane State:
 - Requires 65K < 100K forwarding table entries
- Data Plane Update Rate:
 - Requires 0 < 2500 updates/second
- Other Goals:
 - Processes BGP update bursts in real time (50 ms)
 - Requires only 360 BGP Next Hops compared to 25K from previous solutions

You Can Run iSDX Today

http://sdx.cs.princeton.edu

- Running code
 - Vagrant & Docker based setup
 - Instructions to run with Hardware Switches
- Ongoing efforts
 - Hosted by Open Networking Foundation
 - Deployment
 - Inter-agency exchange
 - IXPs in Europe & Asia