Rachit Agarwal -
Corriell University (starting Fall) "

Network Task

Delivering data from source(s) to corresponding destination(s)
 Policies (e.g., resource sharing)

* Performance metrics (e.g., latency, throughput)

£

(E Switching fabric ﬁ(B Network fabric ﬁ

Which packet to schedule Which flow to schedule
next? (Packet scheduling) next? (Flow scheduling)

Delivering flows and packets

Switching fabric E Network fabric ﬁ

Great area to write-papers do research
* Ever-evolving metrics (latency, tail latency, deadlines,)
e ... workloads (flows, short flows, coFlows,)
e ... contexts (WAN, datacenters, cellular,)
e ... trends (new/commodity hardware, centralized, distributed,)

Choose a random permutation!

Questions ...

Switching fabric E Network fabric E

Question 1: new near-optimal mechanism for a new objective”?
 FIFO, FIFO+, LIFO, Round Robin, FQ,
 TCP, DCTCP, D2TCP, D3, PDQ, Fastpass, pFabric, pHost, PIAS, PASE,

Question 2: how to support different mechanisms?
 Change hardware for each new mechanism?
* Programmable network hardware?

* The set of abstractions for each and every possible mechanism?

Questions ...

Question:

one near-optimal mechanism for all objectives?

Question:

one near-optimal mechanism for all objectives?

P4 and the RMT switch
* no abstractions and implementations for scheduling
* Right time to ask the question!

NO: we need to desigh new mechanisms with new objective
 Programmable packet schedulers a necessity

* Focus on designing the set of abstractions

YES: changes the lens through which we view scheduling mechanisms
e one abstraction: simplified network programming

* is it cheaper to implement than the universal mechanism?

Universal Scheduling Mechanism: Feasibility ?

LN

Network fabric

Universal Scheduling Mechanism: Feasibility ?
\4»/\
@ O,
LN

Network fabric ﬁv
[]

Packet output timing
(at egress)

Universal Scheduling Mechanism: Feasibility?

2\

Network fabric

Packet header initialization Packet output timing
(Priority, flow size, flow weight, .. (at egress)
—based on the objective)

Universal Scheduling Mechanism: Feasibility?

Packet scheduling in A /N

(switch decisions — potentially N | >
different for each switch & }"‘§
based on the objective)

Network fabric

Packet header initialization Packet output timing
(Priority, flow size, flow weight, .. (at egress)
—based on the objective)

Universal Scheduling Mechanism: Feasibility?

Pa

(switch decisions — potentally

cket scheduling in A N

i
(%1

fAarant far oach C\‘N_i_t_eh_& }
I CIIU T VI GGl O

Network fabric

Packet header initialization
(Priority, flow size, flow weight, ..
—based on the objective)

%

N

Packet output timing
(at egress)

Universal Scheduling Mechanism: Definition

Given
* any network topology
e any workload (set of flows, their arrival times, and paths)
* any objective function
* each switch may keep infinite state, and implement any logic

* An optimal scheduling algorithm A

Universal Scheduling Mechanism: Definition

Given
* any network topology
e any workload (set of flows, their arrival times, and paths)
* any objective function

* each switch may keep infinite state, and implement any logic

* An optimal scheduling algorithm A

The Universal Scheduling Mechanism should

e produce packet timing at the egress same as A for each packet

e with each switch implementing the same logic

* without keeping any additional state

Universal Scheduling Mechanism: Preliminary results

There exists a Universal Scheduling Mechanism
» except for flows that encounter more than two congestion points

Universal Scheduling Mechanism: Preliminary results

There exists a Universal Scheduling Mechanism
» except for flows that encounter more than two congestion points

Header initialization
e “updatable” slack, at ingress based on objective

Universal Scheduling Mechanism: Preliminary results

There exists a Universal Scheduling Mechanism
» except for flows that encounter more than two congestion points

Header initialization
e “updatable” slack, at ingress based on objective

Switch logic
* Enqueue
 Dequeue: Least Slack First
* Reduce slack value by “waiting time”
e Just need Pipelined-heap implementation

Universal Scheduling Mechanism: Open problems (1)

Our current constraints:
* any network topology
e any workload (set of flows, their arrival times, and paths)
e any objective function
e each switch may keep infinite state, and implement any logic

* An optimal scheduling algorithm A

Relax the constraints
 What if a few packets are allowed to be delayed?
e Approximation algorithms?
 Randomized algorithms?
 What if the switches have limited buffers?

Universal Scheduling Mechanism: Open problems (2)

Other questions

e Active Queue Management

 Multiple objective functions sharing the fabric
* Each flow may have its own goal

 Guarantees in presence of failures

 Implementation issues?

Feedback?

rachit @ cornell

